Top 5 Recent Articles
ARTICLES CATEGORIES
- Algorithms (22)
- All (399)
- Biography (1)
- Blog (44)
- Business Requirements (1)
- Commentary (1)
- Conversion (2)
- Customers (2)
- Data Models (1)
- Education (2)
- GeoRaptor (13)
- GPS (1)
- Image Processing (2)
- Import Export (8)
- Licensing (2)
- LiDAR (1)
- Linear Referencing (4)
- Manifold GIS (3)
- Mapping (1)
- MySQL Spatial (7)
- Networking and Routing (including Optimization) (5)
- Open Source (18)
- Oracle Spatial and Locator (194)
- Partitioning (1)
- PostGIS (36)
- Projections (1)
- Published Articles (1)
- qGIS (1)
- Recommendations (1)
- Services (1)
- Software Change Log (1)
- Source Code (37)
- Space Curves (9)
- Spatial Database Functions (109)
- Spatial DB comparison (1)
- Spatial XML Processing (11)
- SQL Server Spatial (92)
- Standards (3)
- Stored Procedure (17)
- Tessellation or Gridding (10)
- Tools (2)
- Topological Relationships (1)
- Training (2)
- Triangulation (2)
Using Oracle’s SDO_NN Operator – Some examples
This little article was occasioned by someone emailing me and asking:
Actually I do have a topic for you – clustering. Before we moved to Oracle Spatial, we had a request for a client to: “Show us all the stores that are close to each other”. I’m somewhat embarrassed to say that we did this by coordinate match.
What would be nice is to understand how to implement the query: Show me all stores within x distance of each other.
Well, there is nothing to be embarrassed about because you did this before you had Oracle Spatial (actually all the functionality used below is available to Locator users – thanks Oracle)! What I will do is outline the Oracle functionality that can do what the person wanted and give a practical example I used recently to solve a particular problem.
First off the function we need in Oracle is the SDO_NN spatial operator. (My preference for everything I do in Oracle is to try and push as much processing into a SQL statement before launching into PL/SQL ie programming.) The Oracle documentation on SDO_NN is quite thorough so I recommend that you read it in consort with this article: For example, the only thing I will say say about the SDO_NN_DISTANCE ancillary operator (used in the first example) is that it returns the actual distance Oracle computed between the searched for object and the search object supplied to the SDO_NN operator. The examples below will clarify its use. For a detailed discussion on the operators read the documentation. For now, I will limit myself to a few comments and examples.
SDO_BATCH_SIZE vs SDO_NUM_RES
One of the first things to understand is use of the sdo_batch_size and sdo_num_res parameters. (Again the documentation is quite thorough on these parameters.)
sdo_num_res=<N>
simply returns exactly N nearest objects to the search object. So, in the example that follows the nearest object only is returned.
gis@XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9* 'sdo_num_res=1',1) = 'TRUE' gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 271 SHOE 215195.12
(The script to create the STORE table can be accessed here.)
Note that the store is a SHOE store. Let’s “widen” the search a little (note the use of the ORDER BY clause):
gis@XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9 'sdo_num_res=5',1) = 'TRUE' 10* order by 3 gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 271 SHOE 215195.12 100 COMPUTER 215228.103 60 SHOE 215307.04 494 VIDEO 215341.161 493 FURNITURE 215347.298
So, what if we only want the nearest three SHOE stores to our search point? Can we just add the “storetype = ‘SHOE'”?
gis>XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9 'sdo_num_res=5',1) = 'TRUE' 10 and s.storetype = 'SHOE' 11* order by 3 gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 271 SHOE 215195.12 60 SHOE 215307.04
No this will not do what we want. Why? Because the sdo_num_res parameter returns the objects based on their geometry not their attributes: the 5 stores returned by SDO_NN with sdo_num_res=5 are the 5 nearest. No more are returned. These 5 objects are then passed to the added predicate resulting in only 2 of the 5 passing the test. Can we move the predicate around? No because the SDO_NN will still only return the same 5 objects to the SELECT statement. We have to find a way to increase the set that can be returned by SDO_NN. Why not just increase the sdo_num_res to, say, 10?
gis@XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9 'sdo_num_res=10',1) = 'TRUE' 10 and s.storetype = 'SHOE' 11* order by 3 gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 271 SHOE 215195.12 60 SHOE 215307.04 380 SHOE 215909.35
Yes, it works, but it is subject to one guessing a value for sdo_num_res that will work in all cases. For example, sdo_num_res=10 does not work for COMPUTER stores:
gis@XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9 'sdo_num_res=10',1) = 'TRUE' 10 and s.storetype = 'COMPUTER' 11* order by 3 gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 100 COMPUTER 215228.103 465 COMPUTER 215717.65
See, we only got two! Sure, we would increase the sdo_num_res batch size again but we are playing a guessing game.
This is why the sdo_batch_size parameter exists. It exists, as the documentation says,”If any geometries in the table might be nearer than the geometries specified in the WHERE clause”. We know SHOE stores in the table are nearer than our COMPUTER stores but it is COMPUTER stores that we want.
gis@XE> select id, 2 storetype, 3 sdo_nn_distance(1) 4 from store s 5 where sdo_nn(s.geom, 6 mdsys.sdo_geometry(2003,NULL,NULL, 7 mdsys.sdo_elem_info_array(1,1003,3), 8 mdsys.sdo_ordinate_array(380004,5100003,390000,5160000)), 9 'sdo_batch_size=0',1) = 'TRUE' 10 and s.storetype = 'COMPUTER' 11 and rownum < 4 12* order by 3 gis@XE> /
ID STORETYPE SDO_NN_DISTANCE(1) ---------- ---------- ------------------ 100 COMPUTER 215228.103 465 COMPUTER 215717.65 1 COMPUTER 216857.982
A correct result. I will leave you to read up on sdo_batch_size parameter value setting in the documentation.
How do we find the 3 nearest SHOE stores to every SHOE store in the STORE table? As follows?
gis@XE> select /*+ ORDERED USE_NL(s,s2)*/ 2 s.id, 3 s2.id as nearestStoreId, 4 sdo_nn_distance(1) as distance 5 from store s, 6 store s2 7 where s.storetype = 'SHOE' 8 and sdo_nn(s2.geom, 9 s.geom, 10 'sdo_batch_size=10',1) = 'TRUE' 11 and s2.storetype = 'SHOE' 12 and s2.id <> s.id 13 and rownum < 4 14 order by 1,3 15 /
ID NEARESTSTOREID DISTANCE ---------- -------------- ---------- 394 39 5631.82065 394 413 6387.1917 394 462 6927.07224
Anyone spot the error? The rownum < 4 is applied to the final rowset and not to each s.store and its 3 nearest neighbours!
What we need to do is order the query such that the rownum test is applied to the neighbours of each and every store. One way to do this is via a correlated subquery as follows:
gis@XE> select /*+ ORDERED USE_NL(s,s2)*/ 2 s.id, 3 s2.id as nearestStoreId, 4 mdsys.sdo_geom.sdo_distance(s.geom,s2.geom,0.05) as distance 5 from store s, 6 store s2 7 where s.storetype = 'SHOE' 8. AND s2.id in (select id 9 from store s3 10 where sdo_nn(s3.geom,s.geom,'sdo_batch_size=10',1) = 'TRUE' 11 and s3.storetype = 'SHOE' 12 and s3.id <> s.id 13 and rownum < 4) 14* order by 1,2 gis@XE> /
ID NEARESTSTOREID DISTANCE ---------- -------------- ---------- .... 490 82 7933.95789 490 233 7704.35301 490 480 5899.48249 495 159 4850.15973 495 243 5073.66333 495 318 7008.11984 499 41 2635.73385 499 74 4104.74433 499 430 4327.98326
A correct result.
Note: Because of limitations with returned values from correlated sub-queries, we cannot access any sdo_nn_distance() values so we simply use the sdo_geom.sdo_distance function to get out required distance. If I can come up with a better query (or perhaps my readers may have a better approach) I will amend this blog posting.
Quality of Returned Distance
What I want to turn to the types of distances SDO_NN calculates. It is an approximation to the actual geometric distance done so that the speed of the SDO_NN operator remains fast (which it is) through mainly RTree processing or is it computed by looking at the actual geometries? All I will do is conduct a very simple test using a point and a line.
In the Codesys.ProjLine2D table there is a simple, straight line geometry with linetype of ‘STRAIGHTVERTEX’ as follows:
INSERT INTO ProjLine2D VALUES( 'STRAIGHTVERTEX', SDO_GEOMETRY(2002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY( 380000.0, 5100000.0, 380000.0, 5160000.0)));
You will note that it is a horizontal line of length 60,000 meters. If I search this feature using two points to show that the SDO_NN distance calculation is quite accurate.
gis@XE> select sdo_nn_distance(1) 2 from codesys.projline2d p 3 where p.linetype = 'STRAIGHTVERTEX' 4 and sdo_nn(p.geom,mdsys.sdo_geometry(2001,NULL,mdsys.sdo_point_type(380010.0, 5160000.0,NULL),NULL,NULL), 5* 'sdo_num_res=1',1) = 'TRUE' gis@XE> /
SDO_NN_DISTANCE(1) ------------------ 10
gis@XE> select sdo_nn_distance(1) 2 from codesys.projline2d p 3 where p.linetype = 'STRAIGHTVERTEX' 4 and sdo_nn(p.geom,mdsys.sdo_geometry(2001,NULL,mdsys.sdo_point_type(380010.0, 5155550.0,NULL),NULL,NULL), 5* 'sdo_num_res=1',1) = 'TRUE' gis@XE> /
SDO_NN_DISTANCE(1) ------------------ 10
So, SDO_NN must look at the geometries of the objects it deals with to calculate its distances and not rely on MBRs and object vertices.
Hints
You will have noted that that all the queries above that involve a single table require no hints (as expected). However, the query against the two STORE tables above used the ORDERED and USE_NL (USE_Nested_Loops) hints. Why is this? Occasionally, queries just won’t run. For example, here is a query that does not work for the data I ship with my free PL/SQL packages on the copy of XE (10gr) I am running:
gis@XE> select p.id, 2 l.linetype, 3 sdo_nn_distance(1) 4 from codesys.projpoint2d sample (0.1) p, 5 codesys.projline2d l 6 where sdo_nn(l.geom,p.geom,'sdo_num_res=5',1) = 'TRUE' 7 and l.linetype like '%VERTEX%' 8 / select p.id, * ERROR at line 1: ORA-13249: SDO_NN cannot be evaluated without using index ORA-06512: at "MDSYS.MD", line 1723 ORA-06512: at "MDSYS.MDERR", line 17 ORA-06512: at "MDSYS.PRVT_IDX", line 9
I have note that this can happen where a non-spatial attribute used in a predicate has its own index (and sometimes not). This issue is documented in the Spatial Operators chapter of the Oracle Spatial documentation and also in the excellent book Pro Oracle Spatial. The recommended solution is to include hints. Sometimes adding the /*+ORDERED*/ hint on its own can work but in other cases not. The ones recommended in the book involve knowing about the name of the RTRee and ordinary indexes over the CODESYS.PROJLINE2D table (/*+INDEX(rtree index name)*/). Similarly for the documentation though it does suggested the LEADING hint in cases involving a join between the two tables in the FROM clause used in the SDO_NN operator. I have found that, at times, the ORDERED, INDEX and NO_INDEX hints are not enough: I have had to specify the LEADING or USE_NL (USE_Nested_Loops) hints as in the following examples:
gis@XE> select /*+ORDERED USE_NL(p,l) */ 2 p.id, 3 l.linetype, 4 sdo_nn_distance(1) 5 from codesys.projpoint2d sample (0.1) p, 6 codesys.projline2d l 7 where sdo_nn(l.geom,p.geom,'sdo_num_res=5',1) = 'TRUE' 8 and l.linetype like '%VERTEX%' 9 /
ID LINETYPE SDO_NN_DISTANCE(1) ---------- ---------------------------------------- ------------------ 393 VERTEXARC 156738.398 393 VERTEX 241507.531 393 STRAIGHTVERTEX 249322.965 393 45DEGREEVERTEX 300109.767
You should read the documentation and be prepared to experiment with different hints.
A Real Example
Finally, I thought I would leave you with a real example derived from something I had to do for a customer recently. What we will do is find the nearest vertex-to-vertex segment (greater than 5 meters in length) of a land parcel polygon to a road centreline with the same name. Here is a picture of some data and a road centreline. Note that the distance to the road centreline will be the same for a parcel side boundary where it joins a front boundary as both share the same (corner) vertex. To get around this we will use the mid-point of each segment.
!/images/15.gif (Before sdo_nn/min-point processing)!
The identifiers of the hightlighted land parcels are: oid in ( 26388, 26386, 26387, 26392, 26390, 26391, 26389 )
Here is a query that achieves what we want to do.
gis@XE> select /*+ ORDERED USE_NL(a,s)*/ 2 a.oid, 3 sdo_geom.sdo_length(sdo_geometry(2002,8307,null, 4 sdo_elem_info_array(1,2,1), 5 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)), 6 0.05) length 7 from land_parcel a, 8 table(codesys.geom.getpipedvector2d(a.geom)) b, 9 road_centreline s 10 where a.oid in ( 26388, 26386, 26387, 26392, 26390, 26391, 26389 ) 11 and sdo_nn(s.geom, 12 sdo_geometry(2001,8307, sdo_point_type((b.startcoord.x+b.endcoord.x)/2,(b.startcoord.y+b.endcoord.y)/2,null), 13 NULL,NULL), 14 'sdo_num_res=1') = 'TRUE' 15 and s.street_name = a.street_name 16 and sdo_geom.sdo_length(sdo_geometry(2002,8307,null, 17 sdo_elem_info_array(1,2,1), 18 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)), 19 0.05) > 5 20 order by 1,2 21 /
OID LENGTH ---------- ---------- 26386 16.598107 26386 35.6314592 26386 35.6419791 26387 15.5455833 26387 17.5226582 26387 32.3342913 26387 35.6419791 26388 11.9649317 26388 32.3342913 26388 37.0525111 26389 13.0049383 26389 36.2842051 26389 37.0525111 26390 16.9069198 26390 36.2708158 26390 36.2842051 26391 18.5583617 26391 19.6084577 26391 36.2663495 26391 36.6570959 26392 18.900781 26392 36.2663495 26392 36.2708158 23 rows selected.
But we want the nearest vector for each OID. The SQL is:
gis@XE> select /*+ ORDERED USE_NL(a,s) */ 2 a.oid, 3 min(sdo_geom.sdo_length(sdo_geometry(2002,8307,null, 4 sdo_elem_info_array(1,2,1), 5 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)), 6 0.05) ) as length 7 from land_parcel a,cad_poly 8 table(codesys.geom.getpipedvector2d(a.geom)) b, 9 road_centreline s 10 where a.oid in ( 26388, 26386, 26387, 26392, 26390, 26391, 26389 ) 11 and sdo_nn(s.geom, 12 sdo_geometry(2001,8307, sdo_point_type((b.startcoord.x+b.endcoord.x)/2,(b.startcoord.y+b.endcoord.y)/2,null), 13 NULL,NULL), 14 'sdo_num_res=1') = 'TRUE' 15 and s.street_name = a.street_name 16 and sdo_geom.sdo_length(sdo_geometry(2002,8307,null, 17 sdo_elem_info_array(1,2,1), 18 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)), 19 0.05) > 5 20 group by a.oid 21 /
OID LENGTH ---------- ---------- 26388 11.9649317 26392 18.900781 26391 18.5583617 26387 15.5455833 26390 16.9069198 26386 16.598107 26389 13.0049383 7 rows selected.
Finally, while we could use the MIN() function with an appropriate GROUP BY clause to return the vector with the minimum distance to the road centreline, we cannot easily return the midpoint of the nearest vector of each OID using these operators. To do so requires some tricky SQL using a rank/partition analytic to find the first vector whose distance to the road centreline is the minimum of all vectors that make up any one land parcel (rank = 1). Here is the final result.
gis@XE> select oid,cldist,midpoint,parcel_vector 2 from (select oid,cldist,midpoint,parcel_vector, 3 RANK() OVER (PARTITION BY oid ORDER BY cldist) as oidrank 4. from ( select /*+ ORDERED USE_NL(a,s)*/ 5 a.oid, 6 sdo_geom.sdo_distance(s.geom, 7 sdo_geometry(2001,8307, 8 sdo_point_type((b.startcoord.x+b.endcoord.x)/2,(b.startcoord.y+b.endcoord.y)/2,null), 9 NULL,NULL), 10 0.05) as cldist, 11 sdo_geometry(2002,8307,null, 12 sdo_elem_info_array(1,2,1), 13 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)) as parcel_vector, 14 sdo_geometry(2001,8307, 15 sdo_point_type((b.startcoord.x+b.endcoord.x)/2,(b.startcoord.y+b.endcoord.y)/2,null), 16 NULL,NULL) as midpoint 17 from land_parcel a, 18 table(codesys.geom.getpipedvector2d(a.geom)) b, 19 road_centreline s 20 where a.oid in ( 26388, 26386, 26387, 26392, 26390, 26391, 26389 ) 21 and sdo_nn(s.geom, 22 sdo_geometry(2001,8307,sdo_point_type((b.startcoord.x+b.endcoord.x)/2,(b.startcoord.y+b.endcoord.y)/2,null),NULL,NULL), 23 'sdo_num_res=1') = 'TRUE' 24 and s.street_name = a.street_name 25 and sdo_geom.sdo_length(sdo_geometry(2002,8307,null, 26 sdo_elem_info_array(1,2,1), 27 sdo_ordinate_array(b.startcoord.x,b.startcoord.y,b.endcoord.x,b.endcoord.y)), 28 0.05) > 5 29 ) 30 ) 31 where oidrank = 1 32 /
OID CLDIST ---------- ---------- MIDPOINT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES) ------------------------------------------------------------------------------- PARCEL_VECTOR(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES) ------------------------------------------------------------------------------------ 26386 5.72710973 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.673904, -37.862795, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.673898, -37.862869, 144.673909, -37.86272)) 26387 10.1054417 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.67386, -37.862933, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.673822, -37.862996, 144.673898, -37.862869)) 26388 16.3701483 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.673864, -37.863038, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.673905, -37.863081, 144.673822, -37.862996)) 26389 11.580563 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.673974, -37.863058, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.674042, -37.863036, 144.673905, -37.863081)) 26390 6.43017772 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.674138, -37.863039, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.674234, -37.863043, 144.674042, -37.863036)) 26391 5.70850051 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.674554, -37.863055, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.674659, -37.863059, 144.674449, -37.863051)) 26392 6.07655561 SDO_GEOMETRY(2001, 4030, SDO_POINT_TYPE(144.674341, -37.863047, NULL), NULL, NULL) SDO_GEOMETRY(2002, 4030, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(144.674449, -37.863051, 144.674234, -37.863043)) 7 rows selected.
Mapping these midpoints (large gray circles) produces the following.
!/images/14.gif (After sdo_nn/min-point processing)!
Given Thomas’s comments below I thought I would show an image of the solution I created from a new algorithm that is much improved algorithm over the one above. Here the requirement is to place a centroid point 3 meters inside the road boundary of a land parcel: if possible the centroid should be in the middle of the road frontage. If anyone is interested in using this algorithm (encapsulated inside a fairly short PL/SQL Procedure), please contact me, but generally the algorithm:
- Filters out all boundaries that are shared in adjacent polygons;
- Takes advantage of the anti-clockwise winding of the outer shell of a polygon to create the point 3 meters inside the boundary;
- Uses SDO_NN to find the correct boundary (both the land parcel and road centreline data I was provided have road name as an attribute);
- Uses my CENTROID.sdo_centroid() function to find the middle point of the chosen road frontage.
Here is the finaly image after processing (I know it is a bit garish but I have deliberately coloured the parcel and road centrelines by their road name to show how the algorithm correctly finds the land parcel frontage closest to its named road).
!http://www.spatialdbadvisor.com/images/65.gif (Land Parcel Centroids 3m Inside Road Frontage)!
If you reached the end of this article, thanks for persevering with the material. I hope you got something out of it.
Documentation
- MySQL Spatial General Functions
- Oracle LRS Objects
- Oracle Spatial Exporter (Java + pl/SQL)
- Oracle Spatial Object Functions
- Oracle Spatial Object Functions (Multi Page)
- PostGIS pl/pgSQL Functions
- SC4O Oracle Java Topology Suite (Java + pl/SQL)
- SQL Server Spatial General TSQL Functions
- SQL Server Spatial LRS TSQL Functions