Top 5 Recent Articles
ARTICLES CATEGORIES
- Algorithms (22)
- All (399)
- Biography (1)
- Blog (44)
- Business Requirements (1)
- Commentary (1)
- Conversion (2)
- Customers (2)
- Data Models (1)
- Education (2)
- GeoRaptor (13)
- GPS (1)
- Image Processing (2)
- Import Export (8)
- Licensing (2)
- LiDAR (1)
- Linear Referencing (4)
- Manifold GIS (3)
- Mapping (1)
- MySQL Spatial (7)
- Networking and Routing (including Optimization) (5)
- Open Source (18)
- Oracle Spatial and Locator (194)
- Partitioning (1)
- PostGIS (36)
- Projections (1)
- Published Articles (1)
- qGIS (1)
- Recommendations (1)
- Services (1)
- Software Change Log (1)
- Source Code (37)
- Space Curves (9)
- Spatial Database Functions (109)
- Spatial DB comparison (1)
- Spatial XML Processing (11)
- SQL Server Spatial (92)
- Standards (3)
- Stored Procedure (17)
- Tessellation or Gridding (10)
- Tools (2)
- Topological Relationships (1)
- Training (2)
- Triangulation (2)
COGO: Computing Arc To Chord (Arc2Chord) Separation
Computing the arc to chord (Arc2Chord) separation between an arc on the circumference of a circle and the chord subtended by that arc is considered to be a vital measure for determining how well a vertex defined polygon matches its related circle (or arc in a circular arc).
In cadastral applications, an arc to chord separation value of 3mm is considered to be a good value for approximating a polygon to a circular arc.
This value is relatively easy to calculate and is give here for those who need it.
Note that I have a schema call cogo in which I create functions like this. You can use anything you like.
/* ---------------------------------------------------------------------------------------- * @function : ArcToChordSeparation * @precis : Returns the separation between an arc on the circumference of a circle * and the chord it subtends at the centre of the arc. * @version : 1.0 * @usage : FUNCTION ArcToChordSeparation( @p_dRadius Float, * @p_dAngle Float) * RETURNS FLOAT; * eg select dbo.ArcToChordSeparation(10,90.0) as Arc2ChordSeparation; * @param : p_dRadius : Radius of Circle * @paramtype : p_dRadius : FLOAT * @param : p_dAngle : Angle subtended at centre for which chord length is to be calculated * @paramtype : p_dAngle : FLOAT * @return : Arc2ChordSep : The chord subtended by the angle * @rtnType : Arc2ChordSep : FLOAT * @note : Does not throw exceptions * @note : Assumes planar projection eg UTM. * @history : Simon Greener - Feb 2005 - Original coding. * @history : Simon Greener - May 2011 - Converted to SQL Server 2008 TSQL * @copyright : Licensed under a Creative Commons Attribution-Share Alike 2.5 Australia License. (http://creativecommons.org/licenses/by-sa/2.5/au/) */ Create Function cogo.ArcToChordSeparation(@p_dRadius Float, @p_dAngle Float) Returns Float As BEGIN DECLARE @dAngleRad Float, @dCentreToChordMidPoint Float, @dArcChordSeparation Float; BEGIN SET @dAngleRad = @p_dAngle * PI() / 180; SET @dCentreToChordMidPoint = @p_dRadius * COS(@dAngleRad/2); SET @dArcChordSeparation = @p_dRadius - @dCentreToChordMidPoint; Return @dArcChordSeparation; End; END GO
An example of how to use this function is as follows:
select cogo.ArcToChordSeparation(10,90.0) as Arc2ChordSep;
|_. Arc2ChordSep| |2.92893218813452|
Hope this helps someone.
Documentation
- MySQL Spatial General Functions
- Oracle LRS Objects
- Oracle Spatial Exporter (Java + pl/SQL)
- Oracle Spatial Object Functions
- Oracle Spatial Object Functions (Multi Page)
- PostGIS pl/pgSQL Functions
- SC4O Oracle Java Topology Suite (Java + pl/SQL)
- SQL Server Spatial General TSQL Functions
- SQL Server Spatial LRS TSQL Functions