Top 5 Recent Articles
ARTICLES CATEGORIES
- Algorithms (22)
- All (399)
- Biography (1)
- Blog (44)
- Business Requirements (1)
- Commentary (1)
- Conversion (2)
- Customers (2)
- Data Models (1)
- Education (2)
- GeoRaptor (13)
- GPS (1)
- Image Processing (2)
- Import Export (8)
- Licensing (2)
- LiDAR (1)
- Linear Referencing (4)
- Manifold GIS (3)
- Mapping (1)
- MySQL Spatial (7)
- Networking and Routing (including Optimization) (5)
- Open Source (18)
- Oracle Spatial and Locator (194)
- Partitioning (1)
- PostGIS (36)
- Projections (1)
- Published Articles (1)
- qGIS (1)
- Recommendations (1)
- Services (1)
- Software Change Log (1)
- Source Code (37)
- Space Curves (9)
- Spatial Database Functions (109)
- Spatial DB comparison (1)
- Spatial XML Processing (11)
- SQL Server Spatial (92)
- Standards (3)
- Stored Procedure (17)
- Tessellation or Gridding (10)
- Tools (2)
- Topological Relationships (1)
- Training (2)
- Triangulation (2)
COGO: Compute arc length subtended by angle centre of circle
In working with circles (and circular arcs) in spatial data one must be able to compute the length of an arc defined by an angle subtended at the centre of a circle.
In particular this is important for converting circles to vertex-stroked polygons and vice versa.
Here is an encoding of the calculation of the length of a arc defined by an angle subtended at the centre of a circle for use in SQL Server 2008 spatial.
Note that I have a schema call cogo in which I create functions like this. You can use anything you like.
/* ---------------------------------------------------------------------------------------- * @function : ComputeArcLength * @precis : Computes the length of the arc on the circumference of a circle subtended * at its centre by the the supplied angle * @version : 1.0 * @usage : FUNCTION ComputeArcLength( @p_dRadius Float, * @p_dAngle Float) * RETURNS INTEGER * eg select cogo.ComputeArcLength(10,90.0) as arcLength; * @param : @p_dRadius : Radius of Circle * @paramtype : @p_dRadius : Float * @param : @p_dAngle : Angle subtended at centre of circle expressed as * degree value > 0 and <= 360 * @paramtype : @p_dAngle : Float * @return : ArcLength : the length of the arc on the circumference subtended by the supplied angle * @rtnType : ArcLength : INTEGER * @note : Does not throw exceptions * @note : Assumes planar projection eg UTM. * @history : Simon Greener - Feb 2005 - Original coding. * @history : Simon Greener - May 2011 - Converted for use in TSQL * @copyright : Licensed under a Creative Commons Attribution-Share Alike 2.5 Australia License. (http://creativecommons.org/licenses/by-sa/2.5/au/) */ Create Function cogo.ComputeArcLength(@p_dRadius Float, @p_dAngle Float) Returns Float AS BEGIN DECLARE @dArc Float, @dAngleRad Float; BEGIN SET @dAngleRad = RADIANS(@p_dAngle); SET @dArc = @p_dRadius * @dAngleRad; Return @dArc; END; END GO
An example of how to execute this function is as follows:
select ( 2 * PI() * 10 ) as circumference, cogo.ComputeArcLength(10,90.0) as arcLength, cogo.ComputeArcLength(10,90.0) / ( 2 * PI() * 10 ) as ratio;
circumference | arcLength | ratio |
---|---|---|
62.8318530717959 | 15.707963267949 | 0.25 |
I hope this helps someone.
Documentation
- MySQL Spatial General Functions
- Oracle LRS Objects
- Oracle Spatial Exporter (Java + pl/SQL)
- Oracle Spatial Object Functions
- Oracle Spatial Object Functions (Multi Page)
- PostGIS pl/pgSQL Functions
- SC4O Oracle Java Topology Suite (Java + pl/SQL)
- SQL Server Spatial General TSQL Functions
- SQL Server Spatial LRS TSQL Functions